高级检索

量子纠缠:从量子物质态到深度学习

程嵩, 陈靖, 王磊

程嵩, 陈靖, 王磊. 量子纠缠:从量子物质态到深度学习[J]. 物理, 2017, 46(7): 416-423. DOI: 10.7693/wl20170702
引用本文: 程嵩, 陈靖, 王磊. 量子纠缠:从量子物质态到深度学习[J]. 物理, 2017, 46(7): 416-423. DOI: 10.7693/wl20170702
CHENG  Song, CHEN Jing, WANG Lei. Quantum entanglement: from quantum states of matter to deep learning[J]. PHYSICS, 2017, 46(7): 416-423. DOI: 10.7693/wl20170702
Citation: CHENG  Song, CHEN Jing, WANG Lei. Quantum entanglement: from quantum states of matter to deep learning[J]. PHYSICS, 2017, 46(7): 416-423. DOI: 10.7693/wl20170702

量子纠缠:从量子物质态到深度学习

Quantum entanglement: from quantum states of matter to deep learning

  • 摘要: 量子纠缠在量子物质态的研究中扮演着日趋重要的角色,它可以标记传统范式难以区分的新奇量子态和量子相变,并指导设计高效的数值算法来精确地研究量子多体问题。最近,随着一些深度学习技术在量子物理问题中的应用,人们惊奇地发现:从量子纠缠的视角审视深度学习,或许有助于反过来理解和解决一些深度学习中的问题。量子纠缠定量化地刻画了现实数据集的复杂度,并指导相应的人工神经网络结构设计。沿着这个思路,物理学家们对于量子多体问题所形成的种种洞察和理论可以以一种意想不到的方式应用在现实世界中。
  • [1] Jaynes E T. Phys. Rev.,1957,106:620
    [2] Landauer R. IBM J. Research and Develop.,1961,5:183
    [3] Bennett C H. International Journal of Theoretical Physics,1982,21:905
    [4] Vidal G,Latorre J I,Rico E et al. Phys. Rev. Lett.,2003,90:227902
    [5] Kitaev A,Preskill J. Phys. Rev. Lett.,2006,96:110404
    [6] Levin M,Wen X G. Phys. Rev. Lett.,2006,96:110405
    [7] Zeng B,Chen X,Zhou D L et al. 2015,arXiv:1508.02595,Springer in press
    [8] Eisert J,Cramer M,Plenio M B. Rev. Mod. Phys.,2010,82:277
    [9] Ryu S,Takayanagi T. Phys. Rev. Lett.,2006,96:181602
    [10] Van Raamsdonk M. Gen. Rel. Grav.,2010,42:2323
    [11] Swingle B. 2012,arXiv:1209. 3304
    [12] Maldacena J,Susskind L. Fortschr. Phys.,2013,61:781
    [13] It from Qubit: Simons Collaboration on Quantum Fields,Gravity,and Information
    [14] Carrasquilla J,Melko R G. Nature Physics,2017,13:431
    [15] van Nieuwenburg E P L,Liu Y H,Huber S D. Nature Physics,2017,13:435
    [16] Wang L. Phys. Rev. B,2016,94:195105
    [17] Carleo G,Troyer M. Science,2017,355:602
    [18] Cai Z. 2017,arXiv:1704. 05148
    [19] Silver D et al. Nature,2016,529:484
    [20] Mnih V et al. Nature,2015,518:529
    [21] http://archives-dc.library.caltech.edu/islandora/object/ct1%3A483/print_object
    [22] OpenAI Blog Post on Generative Models
    [23] http://www.deeplearningbook.org
    [24] Cybenko G. Mathematics of Control,Signals,and Systems,1989,2:303; Hornik K,Stinchcombe M,White H. Neural Networks,1989,2:359
    [25] Freund Y,Haussler D. in Proceeding NIPS’91 Proceedings of the 4th International Conference on Neural Information Processing Systems,1994. 912;Le Roux N,Bengio Y. Neural Computation,2008,20:1631
    [26] http://www.asimovinstitute.org/neural-network-zoo/
    [27] 其实AlphaGo 程序中采用了一种不同的策略来处理围棋局面中的对称性[19]
    [28] Lagaris I E,Likas A,Fotiadis D I. Comput. Phys. Commun.,1997,104:1
    [29] Deng D L,Li X P,Das Sarma S. 2016,arXiv:1609. 09060
    [30] Deng D L,Li X P,Das Sarma S. Phys. Rev. X,2017,7:021021
    [31] Chen J,Cheng S,Xie H D et al. arXiv:1701.04831
    [32] Gao X,Duan L M. 2017,arXiv:1701.05039
    [33] Huang Y C,Moore J E. 2017,arXiv:1701.06246
    [34] Affleck I,Kennedy T,Lieb E H. Phys. Rev. Lett.,1987,59:799
    [35] http://yann.lecun.com/exdb/mnist/
    [36] Lin H,Tegmark M,Rolnick D. 2016,arXiv:1608.08225
    [37] Aaronson S. Quantum Computing since Democritus. Cambridge:Cambridge University Press,2013
    [38] De Domenico M,Biamonte J. Phys. Rev. X,2016,6:041062
    [39] Stoudenmire E M,Schwab D J. Advances in Neural Information Processing Systems,2016,29:4799
    [40] Cohen N,Sharir O,Shashua A. 29th Annual Conference on Learning Theory,2016,698:4782
    [41] Levine Y,Yakira D,Cohen N et al. 2017,arXiv:1704. 01552
    [42] 郜勋,尹璋琦. 物理,2017,46(3):182
    [43] Biamonte J,Wittek P,Pancotti N et al. 2016,arXiv:1611. 09347
计量
  • 文章访问数:  453
  • HTML全文浏览量:  69
  • PDF下载量:  2400
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-04
  • 发布日期:  2017-07-11

目录

    /

    返回文章
    返回