高级检索

低温固态制冷:从经典材料到量子材料

Low-temperature solid-state cooling: from classical to quantum materials

  • 摘要: 低温环境的建立为基础物理、材料科学以及量子信息等领域的研究提供了关键支撑。从基于气体压缩与膨胀原理的传统制冷,到近年来迅速发展的固态制冷,人类对低温的持续探索过程亦是对物质本质不断深化理解的过程。低温固态制冷以凝聚态体系的电荷、自旋等多种微观自由度为载体,通过外场调控实现熵的变化或转移,具有无运动部件、高稳定性与潜在高效率等优势。随着量子科技的兴起与氦资源的日益短缺,发展新型高效低温固态制冷原理和技术已成为广受关注的研究方向。文章从热力学视角系统讨论热电、磁卡及多卡等固态制冷效应和它们的内在联系,重点分析量子材料的制冷规律及其背后的自由度耦合和量子涨落效应,并展望基于量子物态的新一代固态制冷发展方向。

     

    Abstract: Low-temperature environments are essential for advances in fundamental physics, materials science, and quantum technologies. From gas-compression refrigeration to modern solid-state cooling, the pursuit of lower temperatures reflects a deepening understanding of matter. Solid-state cooling harnesses entropy changes associated with various microscopic degrees of freedom in condensed-matter systems, offering the potential of high stability, compactness, and efficiency. Driven by the rise of quantum technology and the scarcity of helium, new principles and technologies of solid-state refrigeration have become increasingly important. This work reviews thermoelectric, magnetocaloric, and multicaloric effects from a thermodynamic perspective and their relationship, highlighting how quantum materials—with their coupled degrees of freedom and quantum fluctuations—open new pathways toward efficient low-temperature cooling.

     

/

返回文章
返回