高级检索

重力加速度的量子测量仪器——原子干涉绝对重力仪

张祎阳, 董翔宇, 王少凯

张祎阳, 董翔宇, 王少凯. 重力加速度的量子测量仪器——原子干涉绝对重力仪[J]. 物理, 2024, 53(12): 820-827. DOI: 10.7693/wl20241203
引用本文: 张祎阳, 董翔宇, 王少凯. 重力加速度的量子测量仪器——原子干涉绝对重力仪[J]. 物理, 2024, 53(12): 820-827. DOI: 10.7693/wl20241203
ZHANG Yi-Yang, DONG Xiang-Yu, WANG Shao-Kai. A quantum atomic interference gravimeter for absolute measurements of gravitational acceleration[J]. PHYSICS, 2024, 53(12): 820-827. DOI: 10.7693/wl20241203
Citation: ZHANG Yi-Yang, DONG Xiang-Yu, WANG Shao-Kai. A quantum atomic interference gravimeter for absolute measurements of gravitational acceleration[J]. PHYSICS, 2024, 53(12): 820-827. DOI: 10.7693/wl20241203
张祎阳, 董翔宇, 王少凯. 重力加速度的量子测量仪器——原子干涉绝对重力仪[J]. 物理, 2024, 53(12): 820-827. CSTR: 32040.14.wl20241203
引用本文: 张祎阳, 董翔宇, 王少凯. 重力加速度的量子测量仪器——原子干涉绝对重力仪[J]. 物理, 2024, 53(12): 820-827. CSTR: 32040.14.wl20241203
ZHANG Yi-Yang, DONG Xiang-Yu, WANG Shao-Kai. A quantum atomic interference gravimeter for absolute measurements of gravitational acceleration[J]. PHYSICS, 2024, 53(12): 820-827. CSTR: 32040.14.wl20241203
Citation: ZHANG Yi-Yang, DONG Xiang-Yu, WANG Shao-Kai. A quantum atomic interference gravimeter for absolute measurements of gravitational acceleration[J]. PHYSICS, 2024, 53(12): 820-827. CSTR: 32040.14.wl20241203

重力加速度的量子测量仪器——原子干涉绝对重力仪

基金项目: 

科技创新2030——“量子通信与量子计算机”重大项目(批准号:2021ZD0300602)

详细信息
    通讯作者:

    王少凯,email:wangshk@nim.ac.cn

A quantum atomic interference gravimeter for absolute measurements of gravitational acceleration

  • 摘要: 重力加速度是一个随时间和空间变化的物理量,在资源勘探、大地测量、计量科学等领域有非常重要的应用。重力仪是用来获取重力数据的仪器,根据标度因子获取方式的不同分为相对重力仪与绝对重力仪。绝对重力仪的测量数据能够跨越时空直接比较与应用,因此更受关注。原子干涉绝对重力仪由于没有机械磨损,可以集高精准、长连续的绝对重力测量于一身。文章将简要介绍原子干涉绝对重力仪的基本原理、物理实现、性能指标、国内外进展以及未来发展等内容。
    Abstract: Little g, a position dependent and time varying quantity, has very important applications in resource exploration, geodesy, metrology, and other fields. A gravimeter is an instrument used to obtain gravity data, which may be relative or absolute according to how the scale factors are obtained. An absolute gravimeter can directly compare and apply measurements across time and space, so it is of more interest. Since there is no mechanical wear, an atomic gravimeter can provide precise and accurate measurements of gravity for long continuous periods of time. In this paper, the basic principle, physical realization, and figure of merit parameters of atomic gravimeters are reviewed, followed by a brief introduction to their current and future development at home and abroad.
  • [1]

    Riegger J et al. Water Resources Research,2014,50(4):3444

    [2]

    Liu H et al. Journal of Geophysical Research-Space Physics, 2005,110(A4):A04301

    [3]

    Bingham R J et al. Geophysical Research Letters,2011,38: L01606

    [4]

    Kibble B P et al. Metrologia,2007,44:427

    [5] 卢炳坤,林弋戈,方占军. 物理,2023,52(7):456
    [6] 赵国栋,卢晓同,常宏. 激光与光电子学研究进展,2023,60(11): 1106003
    [7]

    Denker H et al. Journal of Geodesy,2018,92(5):487

    [8]

    Marson I et al. Journal of Physics E:Scientific Instruments,1986, 19(1):22

    [9]

    Francis O. Journal of Geodesy,2021,95:116

    [10] iGrav轻便型超导重力仪. https://www.greenviewgeo.cn/zhhant/products/igrav%E8%BD%BB%E4%BE%BF%E5%9E%8B%E8%B6%85%E5%AF%BC%E9%87%8D%E5%8A%9B%E4%BB%AA
    [11] FG5-X绝对重力仪. https://www.greenviewgeo.cn/zh-hant/products/fg5-x%E7%BB%9D%E5%AF%B9%E9%87%8D%E5%8A%9B%E4%BB%AA
    [12]

    Peters A et al. Metrologia,2001,38:25

    [13]

    Freier C et al. 2015,arXiv:1512.05660v1-6[physics.atom-ph]

    [14]

    Hu Z K et al. Phys. Rev. A,2013,88:043610

    [15]

    Louchet-Chauvet A et al. New Journal of Physics,2011,13: 065025

    [16]

    Wang S K et al. Metrologia,2018,55(3):360

    [17]

    Wu X et al. Optica,2017,4(12):1545

    [18]

    Nshii C C et al. Nature Nanotechnology,2013,8(5):321

    [19] 赵阳,王少凯,庄伟等. 激光与光电子学进展,2015,52: 091406
    [20]

    Zhao Y et al. Photonics,2020,7:32

    [21]

    Sané S S et al. Optics Express,2012,20(8):8915

    [22]

    Zhu L et al. Optics Express,2018,26(6):6542

    [23]

    Cong Y et al. Optics Letter,2024,49(10):2745

    [24]

    Fang B et al. J. Phys.:Conf. Ser.,2016,723:012049

    [25]

    Hensley J M et al. Review of Scientific Instruments,1999,70: 2735

    [26]

    Tang B et al. Review of Scientific Instruments,2014,85:093109

    [27]

    Zhou M K et al. Review of Scientific Instruments,2015,86: 046108

    [28]

    Chen B et al. Chinese Optics Letters,2020,18(9):090201

    [29]

    Zhou Y et al. Sensors,2024,24(3):1016

    [30]

    Li G et al. Review of Scientific Instruments,2014,85(10):104502

    [31]

    Yao J M et al. IEEE Transactions on Instrumentation and Measurement,2020,69(6):2670

    [32]

    Kasevich M et al. Physical Review Letters,1991,67(2):181

    [33]

    Kasevich M et al. Applied Physics B-Photophysics and Laser Chemistry,1992,54(5):321

    [34]

    Gillot P et al. metrologia,2014,51:L15

    [35]

    Jiang Z et al. Metrologia,2012,49:666

    [36]

    Francis O et al. Metrologia,2015,52:07009

    [37]

    Janvier C et al. Recent Advances in Quantum Gravity Sensors. In:First International Meeting for Applied Geoscience & Energy Expanded Abstracts,2021:3039

    [38]

    Wu X et al. Sci. Adv.,2019,5:eaax0800

    [39]

    Zhang T et al. Physics Review Applied,2023,20:014067

    [40]

    Wu S Q et al. Journal of Geodesy,2021,95:63

    [41]

    Newell D et al. CCM. G-K2.2023 Key Comparison and Additional Comparison. 2024,https://www.bipm.org/documents/d/guest/ccm-g-k2-2023

    [42]

    Jiang B N et al. Scientia Sinica:Physica,Mechanica & Astronomica,2021,51(7):074205

    [43] 白金海,马慧娟,胡栋等. 宇航计测技术,2023,43(05):1
    [44]

    Zhang X et al. Chinese Journal of Scientific Instrument,2023,44(9):94

    [45]

    Geiger R et al. AVS Quantum Science,2020,2(2):024702

计量
  • 文章访问数:  273
  • HTML全文浏览量:  26
  • PDF下载量:  1501
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-23
  • 发布日期:  2024-12-14

目录

    /

    返回文章
    返回