高级检索

超导成“材”之路——实用化高温超导材料的制备及发展

常佳鑫, 张胜楠, 刘吉星

常佳鑫, 张胜楠, 刘吉星. 超导成“材”之路——实用化高温超导材料的制备及发展[J]. 物理, 2024, 53(10): 691-700. DOI: 10.7693/wl20241004
引用本文: 常佳鑫, 张胜楠, 刘吉星. 超导成“材”之路——实用化高温超导材料的制备及发展[J]. 物理, 2024, 53(10): 691-700. DOI: 10.7693/wl20241004
CHANG Jia-Xin, ZHANG Sheng-Nan, LIU Ji-Xing. Preparation and development of practical high-temperature superconducting materials[J]. PHYSICS, 2024, 53(10): 691-700. DOI: 10.7693/wl20241004
Citation: CHANG Jia-Xin, ZHANG Sheng-Nan, LIU Ji-Xing. Preparation and development of practical high-temperature superconducting materials[J]. PHYSICS, 2024, 53(10): 691-700. DOI: 10.7693/wl20241004
常佳鑫, 张胜楠, 刘吉星. 超导成“材”之路——实用化高温超导材料的制备及发展[J]. 物理, 2024, 53(10): 691-700. CSTR: 32040.14.wl20241004
引用本文: 常佳鑫, 张胜楠, 刘吉星. 超导成“材”之路——实用化高温超导材料的制备及发展[J]. 物理, 2024, 53(10): 691-700. CSTR: 32040.14.wl20241004
CHANG Jia-Xin, ZHANG Sheng-Nan, LIU Ji-Xing. Preparation and development of practical high-temperature superconducting materials[J]. PHYSICS, 2024, 53(10): 691-700. CSTR: 32040.14.wl20241004
Citation: CHANG Jia-Xin, ZHANG Sheng-Nan, LIU Ji-Xing. Preparation and development of practical high-temperature superconducting materials[J]. PHYSICS, 2024, 53(10): 691-700. CSTR: 32040.14.wl20241004

超导成“材”之路——实用化高温超导材料的制备及发展

基金项目: 

国家重点基础研发计划(批准号:2022YFE03150101)、西安市重大科技成果科普化作品(批准号:2024JH-CGKP-0073)资助项目

详细信息
    通讯作者:

    张胜楠,email:snzhang@c-nin.com

Preparation and development of practical high-temperature superconducting materials

  • 摘要: 超导材料因具有零电阻效应、完全抗磁性以及量子隧穿效应,在电力、医疗、交通、量子计算、工业、国防等多个领域有着重要的现实意义和巨大的发展前景。自1911年超导现象被发现以来,超导理论、超导材料和超导应用技术均取得了重大进展。近年来,随着制备技术的日益成熟,高温超导材料已经从实验研究走向提升性能、突破应用的实用化阶段。文章将对超导材料的发展历程、物理特性以及分类等进行简要介绍,并系统介绍几种典型的实用化高温超导材料的基本结构、性能特点、制备技术及应用研究进展。在此基础上,对高温超导材料的性能提升和应用发展方向进行展望。
    Abstract: Superconducting materials exhibit zero-resistance, the Meissner effect, and quantum tunneling. Therefore, they are of profound practical significance and have immense developmental prospects in diverse domains such as electric power, health care, transportation, quantum computing, industry, national defense and scientific experimentation. Since the discovery of superconductivity in 1911, its theory, as well as the synthesis and application of superconducting materials, have seen significant progress. In recent years, with the steady improvement of preparation techniques, experimental research on high-temperature superconductivity has progressed to a stage of enhanced performance with potential breakthrough applications. This paper will briefly review the development and physical characteristics and classification of superconducting materials, then describe recent progress in the research on several significant practical high-temperature materials, including their lattice structures, characteristics, fabrication, and applications. Further enhancement of their performance for future applications will also be discussed.
  • [1] 张平祥, 闫果, 冯建情等. 中国工程科学, 2023, 25(1):8
    [2] 罗会仟. 物理, 2016, 45(04):269
    [3] 罗会仟. 物理, 2016, 45(05):339
    [4]

    You Q J, Nori F. Nature, 2011, 474(7353):589

    [5] 冯端等. 金属物理学(第四卷:超导电性和磁性). 北京:科学出版社, 2021. p.159
    [6] 罗会仟. 物理, 2016, 45(06):408
    [7]

    Lilia B, Hennig R, Hirschfeld P et al. J. Phys.:Condens. Matter, 2022, 34:183002

    [8]

    Bondarenko S I, Koverya V P, Krevsun A V et al. Low Temp. Phys., 2017, 43(10):1125

    [9]

    Senatore C, Alessandrini M, Lucarelli A et al. Supercond. Sci. Technol., 2014, 27(10):103001

    [10] 蔡传兵, 刘志勇, 鲁玉明. 中国材料进展, 2011, 30(03):1
    [11] 蔡传兵, 潘成远, 刘志勇等. 物理学进展, 2007, 27(04):467
    [12] 郑贝贝, 邵玲. 材料导报, 2019, 33(S1):318
    [13]

    Miao H, Marken K R, Meinesz M et al. IEEE Trans. Appl. Supercond., 2005, 15:2554

    [14] 金利华, 李成山, 郝清滨. 物理, 2020, 49(11):755
    [15]

    Jiang J Y, Bradford G, Hossain S I et al. IEEE Trans. Appl. Supercond., 2019, 29(5):6400405

    [16]

    Sato K I, Kobayashi S I, Nakashima T. Jpn. J. Appl. Phys., 2012, 51:010006

    [17]

    Awaji S, Watanabe K, Oguro H et al. Supercond. Sci. Technol., 2017, 30(6):065001

    [18] 蔡传兵, 池长鑫, 李敏娟等. 科学通报, 2019, 64(08):827
    [19]

    Shi Y, Liu H, Liu F et al. Physica C:Supercond., 2018, 550:10

    [20] 蔡传兵, 杨召, 郭艳群. 物理, 2020, 49(11):747
    [21]

    Uglietti D. Supercond. Sci. Technol., 2019, 32(5):053001

    [22]

    Wu Y, Wu H F, Zhao Y et al. Mater. Today Nano, 2023, 24:2588

    [23]

    Obradors X, Puig T. Supercond. Sci. Technol., 2014, 27(4):044003

    [24]

    Shiohara Y, Taneda T, Yoshizumi M. Jpn. J. Appl. Phys., 2012, 51:010007

    [25]

    Lee C, Son H, Won Y et al. Supercond. Sci. Technol., 2020, 33(4):044006

    [26]

    Seungyong H, Kwanglok K, Kwangmin K et al. Nature, 2019, 570(7762):496

    [27]

    Nagamatsu J, Nakagawa N, Muranaka T et al. Nature, 2001, 410(6824):63

    [28] 闻海虎. 材料研究学报, 2015, 29(04):241
    [29] 刘浩然, 杨芳, 王庆阳等. 稀有金属材料与工程, 2018, 47(03):1020
    [30] 周廉, 甘子钊. 中国高温超导材料及应用发展战略研究:中国工程院咨询项目. 北京:化学工业出版社, 2008
    [31]

    Giunchi G, Ceresara S, Ripamonti G. Supercond. Sci. Technol., 2003, 16(2):285

    [32]

    Hiroaki K, Jahmahn H, Kazumasa T et al. IEEE Trans. Appl. Supercond., 2011, 21(3):2643

    [33]

    Wang Z K, Yang F, Wang Q Y et al. Supercond. Sci. Technol., 2024, 37:085017

    [34]

    Tomsic M, Rindfleisch M, Yue J et al. Physica C, 2007, 456(1-2):203

    [35]

    Kamihara Y, Watanabe T, Hirano M et al. J. Am. Chem. Soc, 2008, 30(11):3296

    [36] 丁兆君. 科学, 2020, 72(01):29
    [37] 徐中堂, 马衍伟. 稀有金属, 2017, 41(05):553
    [38]

    Chen X H, Dai P C, Feng D L et al. National Science Review, 2014, 1(3):371

    [39] 马衍伟. 物理学进展, 2017, 37(1):12
    [40]

    Si W D, Han S J, Shi X Y et al. Nat. Commun., 2013, 4:1347

计量
  • 文章访问数:  362
  • HTML全文浏览量:  63
  • PDF下载量:  1426
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 发布日期:  2024-10-14

目录

    /

    返回文章
    返回