Graphene nanoribbons for next-generation high-performance electronics
-
摘要: 石墨烯纳米带具有可调节的带隙和较高的载流子迁移率,是未来高性能纳米电子器件的理想候选材料之一。然而,可用于电子器件的高质量石墨烯纳米带的制备一直是一个巨大挑战。文章关注高质量石墨烯纳米带的制备,重点介绍近年来采用金属纳米颗粒催化生长纳米带方面的重要进展,尤其是运用该技术在六方氮化硼层间嵌入式生长超高质量石墨烯纳米带的最新成果。基于这种层间纳米带的场效应晶体管表现出优异的性能,有望在将来的碳基纳米电子器件中扮演重要的角色。最后讨论该领域未来可能面临的机遇与挑战。Abstract: Graphene nanoribbons possess a tunable bandgap and high carrier mobility, making them an ideal candidate for future high-performance nanoelectronic devices. However, the preparation of high-quality nanoribbons suitable for electronic applications has been a significant challenge. This article focuses on their nanoparticle-catalyzed fabrication and the use of this technique in growing high-quality nanoribbons embedded within hexagonal boron nitride stacks. Field-effect transistors based on this structure demonstrate excellent performance, showing promise for future carbon-based nanoelectronics. Finally, we explore the potential opportunities and challenges in this field.
-
-
[1] Geim A K. Science, 2009, 324:1530
[2] Schwierz F. Nat. Nanotechnol., 2010, 5:487
[3] Son Y W, Cohen M L, Louie S G. Phys. Rev. Lett., 2006, 97:216803
[4] Laird E A, Kuemmeth F, Steele G A et al. Rev. of Mod. Phys., 2015, 87:703
[5] Liu L J, Han J, Xu L et al. Science, 2020, 368:850
[6] Lou S, Lyu B, Zhou X et al. Quantum Front., 2024, 3:3
[7] Saraswat V, Jacobberger R M, Arnold M S et al. ACS Nano, 2021, 15:3674
[8] Wang H, Wang H S, Ma C et al. Nat. Rev. Phys., 2021, 3:791
[9] Han M Y et al. Phys. Rev. Lett., 2007, 98:206805
[10] Shi Z, Yang R, Zhang L et al. Adv. Mater., 2011, 23:3061
[11] Jiao L, Zhang L, Wang X et al. Nature, 2009, 458:877
[12] Kosynkin D V et al. Nature, 2009, 458:872
[13] Tao C, Jiao L, Yazyev O et al. Nat. Phys., 2011, 7:616
[14] Jiao L, Wang X, Diankov G et al. Nat. Nanotechnol., 2010, 5:321
[15] Chen L, He L, Wang H et al. Nat. Comm., 2017, 8:14703
[16] Wang H S, Chen L, Elibol K et al. Nat. Mater., 2021, 20:202
[17] Lyu B, Chen J, Lou S et al. Adv. Mater., 2022, 34:2200956
[18] Lou S, Lyu B, Chen J et al. Nano Lett., 2023, 24:156
[19] Fang T, Konar A, Xing H et al. Phys. Rev. B, 2008, 78:205403
[20] LiX, Wang X, Zhang L et al. Science, 2008, 319:1229
[21] Wang X et al. Phys. Rev. Lett., 2008, 100:206803
[22] Li H et al. ACS Appl. Mater. Interfaces, 2021, 13:52892
[23] Wang G et al. Appl. Phys. Lett., 2016, 109:053101
[24] Wang X, Ouyang Y, Jiao L et al. Nat. Nanotechnol., 2011, 6:563
[25] Lin M W et al. Phys. Rev. B, 2011, 84:125411
[26] Lu X et al. Appl. Phys. Lett., 2016, 108:113103
[27] Rhodes D et al. Nat. Mater., 2019, 18:541
[28] Wang L, Meric I, Wang P Y et al. Science, 2013, 342:614
[29] Lyu B, Chen J, Wang S et al. Nature, 2024, 628:758
计量
- 文章访问数: 281
- HTML全文浏览量: 52
- PDF下载量: 1426