高级检索

基于机器学习的材料设计

赵纪军

赵纪军. 基于机器学习的材料设计[J]. 物理, 2024, 53(7): 450-459. DOI: 10.7693/wl20240703
引用本文: 赵纪军. 基于机器学习的材料设计[J]. 物理, 2024, 53(7): 450-459. DOI: 10.7693/wl20240703
ZHAO Ji-Jun. Materials design based on machine learning[J]. PHYSICS, 2024, 53(7): 450-459. DOI: 10.7693/wl20240703
Citation: ZHAO Ji-Jun. Materials design based on machine learning[J]. PHYSICS, 2024, 53(7): 450-459. DOI: 10.7693/wl20240703

基于机器学习的材料设计

基金项目: 

国家自然科学基金(批准号:U2167217)资助项目

详细信息
    通讯作者:

    赵纪军,email:zhaojj@scnu.edu.cn

Materials design based on machine learning

  • 摘要: 近年来,计算机算力的飞速提升推动了科学计算和人工智能领域的突破性进展。这两个领域深度融合,共同催生了数据驱动的变革性科学研究范式。作为人工智能技术的代表,机器学习为材料的计算设计带来了前所未有的发展机遇,当前的应用方向主要包括性质预测、合成预测、知识发现、生成式逆向设计等。文章将简要介绍该领域的研究进展,并展望未来发展方向与挑战。
    Abstract: In recent years the rapid growth of computer processing power has led to major breakthroughs in scientific computing and artificial intelligence. The deep integration of these two fields has jointly fostered a data-driven paradigm for scientific research. As a representative of artificial intelligence technology, machine learning has brought unprecedented opportunities for computational materials design, with current applications mainly focusing on property prediction, synthesis prediction, knowledge discovery, and generative inverse design. This article will briefly describe the research progress in this field, and look ahead to the future directions and challenges.
  • [1]

    Song Z,Chen X,Meng F et al. Chin. Phys. B,2020,29(11): 116103

    [2] 张林峰,王涵. 物理,2024,53(7):431
    [3] 徐勇. 物理,2024,53(7):442
    [4]

    Ward L,Liu R,Krishna A et al. Phys. Rev. B,2017,96:024104

    [5]

    Xie T,Grossman J C. Phys. Rev. Lett.,2018,120:145301

    [6]

    Zeng S,Zhao Y,Li G et al. npj Comput. Mater.,2019,5:84

    [7]

    Goodall R E A,Lee A A. Nat. Commun.,2020,11:6280

    [8]

    Schmidt J,Pettersson L,Verdozzi C et al. Sci. Adv.,2021,7(49): eabi7948

    [9]

    Chen C,Ong S P. npj Comput. Mater.,2021,7:173

    [10]

    Choudhary K,DeCost B. npj Comput. Mater.,2021,7:185

    [11]

    Davariashtiyani A,Kadkhodaei S. Commun. Mater.,2023,4:105

    [12]

    Yang H,Hu C,Zhou Y et al. 2024,arXiv:2405.04967v2

    [13]

    Isayev O,Oses C,Toher C et al. Nat. Commun.,2017,8(1): 15679

    [14]

    Zhang Y,Ling C. npj Comput. Mater.,2018,4:25

    [15]

    Tehrani A M,Oliynyk A O,Parry M et al. J. Am. Chem. Soc., 2018,140:9844

    [16]

    Seko A,Maekawa T,Tsuda K et al. Phys. Rev. B,2014,89: 054303

    [17]

    Li X,Blaiszik B,Schwarting M E et al. J. Chem. Phys.,2021, 155:154702

    [18]

    Stanev V,Oses C,Kusne A G et al. npj Comput. Mater.,2018,4: 29

    [19]

    Choudhary K,Garrity K. npj Comput. Mater.,2022,8:244

    [20]

    Katsikas G,Sarafidis C,Kioseoglou J. Phys. Status Solidi (b), 2021,258:2000600

    [21]

    Sanvito S,Oses C,Xue J et al. Sci. Adv.,2017,3(4):e1602241

    [22]

    Lu S,Zhou Q,Guo Y et al. Adv. Mater.,2020,32:2002658

    [23]

    Wang P,Xing J,Jiang X et al. ACS Appl. Mater. Interfaces, 2022,14:33726

    [24]

    Saal J E,Kirklin S,Aykol M et al. JOM,2013,65:1501

    [25]

    Jain A,Ong S P,Hautier G et al. APL Materials,2013,1:011002

    [26]

    Curtarolo S,Setyawan W,Har G L W et al. Comput. Mater. Sci., 2012,58:218

    [27]

    https://mdr.nims.go.jp/collections/5712mb227

    [28]

    Bergerhoff G,Hundt R,Sievers R. J. Chem. Inf. Model.,1983, 23:66

    [29]

    Choudhary K,Garrity K F,Reid A C E et al. npj Comput. Mater.,2020,6:173

    [30]

    Yao T S,Tang C Y,Yang M et al. Chin. Phys. Lett.,2019,36: 068101

    [31]

    Aykol M,Montoya J H,Hummelshøj J. J. Am. Chem. Soc., 2021,143:9244

    [32]

    Antoniuk E R,Cheon G,Wang G et al. npj Comput. Mater.,2023,9:155

    [33]

    Kim E,Huang K,Tomala A et al. Scientific data,2017,4(1):1

    [34]

    Kim E,Huang K,Saunders A et al. Chem. Mater.,2017,29:9436

    [35]

    Kim E,Jensen Z,van Grootel A et al. J. Chem. Inf. Model., 2020,60:1194

    [36]

    Kononova O,Huo H,He T et al. Sci. Data,2019,6:203

    [37]

    Chen Z,Xie F,Wan M et al. Chin. Phys. B,2023,32:118104

    [38]

    AI4Science M R. 2023,arXiv:2311.07361v2

    [39] 王磊,张潘. 物理,2024,53(6):368
    [40]

    Noh J,Kim J,Stein H S et al. Matter,2019,1(5):1370

    [41]

    Court C J,Yildirim B,Jain A et al. J. Chem. Inf. Model.,2020, 60:4518

    [42]

    Kim S,Noh J,Gu G H et al. ACS Cent. Sci.,2020,6:1412

    [43]

    Xiao H,Li R,Shi X et al. Nat. Commun.,2023,14:7027

    [44]

    Zhao Y,Siriwardane E M D,Wu Z et al. npj Comput. Mater., 2023,9:38

    [45]

    Yang S,Cho K,Merchant A et al. 2023,arXiv:2311.09235v2

    [46]

    Zeni C,Pinsler R,Zügner D et al. 2024,arXiv:2312.03687v2

    [47]

    Ye C,Weng H,Wu Q. 2024,arXiv:2403.12478v1

    [48]

    Xie T,Fu X,Ganea O E et al. 2021,arXiv:2110.06197

    [49]

    Szymanski N J,Rendy B,Fei Y et al. Nature,2023,624:86

  • 期刊类型引用(1)

    1. 刘欣慰,刘海广,张文凯. X射线自由电子激光及其在超快结构动力学研究中的应用. 中国科学:物理学 力学 天文学. 2022(07): 191-214 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-07-02
  • 网络出版日期:  2024-07-12

目录

    /

    返回文章
    返回