Time, information and artificial intelligence
-
摘要: 近年来,人工智能(AI)大语言模型取得了突飞猛进的发展,将人工智能对人类社会的影响也拓宽到了前所未有的范围。文章将从与物理学有关的两个角度——信息和时间尺度,来谈谈作者对大语言模型带来的人工智能革命的一些不成熟的见解。文中首先回顾大语言模型的基本原理和近期发展,再讨论从信息的动力学和复杂度的角度如何看待大语言模型的意义。基于人工智能模型和人类认知系统的比较,也会探讨人工智能的下一步发展方向,以及AI智能体方面的探索和发展。Abstract: In recent years, the rapid advances in large language models have expanded the impact of artificial intelligence (AI) on human society to an unprecedented extent. This article will discuss my preliminary insights into the AI revolution brought about by large language models from two physics-related perspectives—information and time scales. I will first review the basic principles and recent developments of large language models, and then discuss their significance from the perspective of information dynamics and complexity. Based on the comparison between AI models and the human cognitive system, I will explore the next direction for AI, as well as the exploration and development of AI agents.
-
Keywords:
- large language models /
- artificial intelligence /
- information /
- complexity /
- system1 /
- system2
-
-
[1] Shannon's Source Coding Theorem. https://web.archive.org/web/20090216231139/;http://plan9.belllabs.com//cm//ms//what//shannonday//shannon1948.pdf
[2] Vaswani A,Shazeer N,Parmar N et al. Attention Is All You Need. 2023,arXiv:1706.03762
[3] 祁晓亮. 人工智能的黎明:从信息动力学的角度看ChatGPT. https://mp.weixin.qq.com/s/DJRSqwo0cWGOAgZM4As-OQ [4] Kahneman D. Thinking,Fast and Slow. Macmillan,2011
[5] Steven P. Psychon. Bull. Rev.,2014,21(5):1112
[6] Wei J et al. Chain-of-thought Prompting Elicits Reasoning in Large Language Models. In:Advances in Neural Information Processing Systems 35,2022
[7] Yao S Y et al. Tree of Thoughts:Deliberate Problem Solving with Large Language Models. In:Advances in Neural Information Processing Systems 36,2024
[8] Besta M et al. Graph of Thoughts:Solving Elaborate Problems with Large Language Models. In:Proceedings of the AAAI Conference on Artificial Intelligence,2024,38(16):17682
[9] Park J S et al. Generative Agents:Interactive Simulacra of Human Behavior. 2023,arXiv:2304.03442
[10] Yang H,Yue S F,He Y Z. Auto-gpt for Online Decision Making:Benchmarks and Additional Opinions. 2023,arXiv:2306.02224
[11] Wu Q Y et al. AutoGen:Enabling Next-gen LLM Applications via Multiagent Conversation Framework. 2023,arXiv:2308. 08155
[12] Pan H N et al. Quantum Many-Body Physics Calculations with Large Language Models. 2024,arXiv:2403.03154
[13] Andrew Ng. What's next for AI agentic workflows. https://www.youtube.com/watch?v=sal78ACtGTc
-
期刊类型引用(1)
1. 吴昊,吴松,聂丽萍,高振桓,王常帅,巩秀芳. 镍基高温合金设计研究现状与展望. 大型铸锻件. 2024(06): 26-33 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 825
- HTML全文浏览量: 141
- PDF下载量: 2156
- 被引次数: 1