高级检索

无中微子双贝塔衰变实验发展沿革与未来展望

王军正, 于骁, 岳骞

王军正, 于骁, 岳骞. 无中微子双贝塔衰变实验发展沿革与未来展望[J]. 物理, 2024, 53(5): 301-309. DOI: 10.7693/wl20240502
引用本文: 王军正, 于骁, 岳骞. 无中微子双贝塔衰变实验发展沿革与未来展望[J]. 物理, 2024, 53(5): 301-309. DOI: 10.7693/wl20240502
WANG Jun-Zheng, YU Xiao, YUE Qian. Development and prospects of neutrinoless double-beta decay experiments[J]. PHYSICS, 2024, 53(5): 301-309. DOI: 10.7693/wl20240502
Citation: WANG Jun-Zheng, YU Xiao, YUE Qian. Development and prospects of neutrinoless double-beta decay experiments[J]. PHYSICS, 2024, 53(5): 301-309. DOI: 10.7693/wl20240502

无中微子双贝塔衰变实验发展沿革与未来展望

基金项目: 

国家重点基础研究发展计划(批准号:2023YFA1607100;2017YFA0402200)、国家自然科学基金(批准号:12175112;11725522)资助项目

详细信息
    通讯作者:

    于骁,email:yuxiao23@mails.tsinghua.edu.cn

    岳骞,email:yueq@mail.tsinghua.edu.cn

Development and prospects of neutrinoless double-beta decay experiments

  • 摘要: 无中微子双贝塔衰变是一种重要的超出标准模型的新物理。在数十年理论和实验的发展与探索的基础上,人们对其可能的物理机制以及实验的技术需求已有较为深刻的理解。国际上有多个实验组通过不同的探测器技术尝试寻找无中微子双贝塔衰变事件,并对半衰期下限给出了1026年量级的限制。目前各实验组正在积极进行下一代实验装置的预研和建设,致力于将半衰期灵敏度提高到1027年以上。中国正依托锦屏地下实验室国际领先的实验环境,开发多个不同路线的探测技术。文章将概述国际上主要的大型无中微子双贝塔衰变实验的现状,并展示在锦屏地下实验室中探索这一前沿物理领域的前景以及基于不同探测器技术的实验方案。
    Abstract: Neutrinoless double-beta decay is an important physics topic beyond the Standard Model. Based on decades of theoretical and experimental research, a somewhat full understanding of its possible physical mechanism and the experimental technical requirements have been established. Many groups worldwide are attempting to detect neutrinoless double-beta decay events using various detection techniques, and have given a lower half-life limit of 1026 years. Now, the next generation of experimental facilities are being appraised or are under construction, with the aim to improve the halflife sensitivity to above 1027 years. The China Jinping Underground Laboratory (CJPL), a world-leading ultralow background facility, provides many different kinds of detection techniques. This paper will review the current status of the major facilities worldwide conducting neutrinoless double-beta decay experiments, including the prospects of such experiments in CJPL,which will be based on various detection schemes.
  • [1]

    Fermi E. Ric. Scientifica,1933,4:491

    [2]

    Fermi E. Nuovo Cim.,1934,11:1

    [3]

    Fermi E. Z. Phys.,1934,88:161

    [4]

    Goeppert M. Phys. Rev.,1935,48:512

    [5]

    Majorana E. Nuovo Cim.,1937,14:171

    [6]

    Furry W H. Phys. Rev.,1939,56:1184

    [7]

    Schechter J,Valle J W F. Phys. Rev. D,1982,25:774

    [8]

    Racah G. Nuovo Cim.,1937,14:322

    [9]

    Fukuda Y et al. Phys. Rev. Lett.,1998,81:1158

    [10]

    Ahmad Q R et al. Phys. Rev. Lett.,2002,89:011302

    [11]

    Bracco A. Nuclear Physics News,2017,27(3):3

    [12]

    Dodge G E. Nuclear Physics News,2024,34(1):3

    [13]

    Masaru D et al. Prog. Theor. Phys.,1981,66(5):1739

    [14]

    Masaru D et al. Prog. Theor. Phys.,1981,66(5):1765

    [15] 中国科学院.中国科学发展战略·无中微子双贝塔衰变实验.北京:科学出版社,2020
    [16]

    Agostini M et al. Phys. Rev. Lett.,2020,125:252502

    [17]

    Arnquist L J et al. Phys. Rev. Lett.,2023,130:062501

    [18]

    Anton G et al. Phys. Rev. Lett.,2019,123:161802

    [19]

    Abe S et al. Phys. Rev. Lett.,2023,130:051801

    [20]

    The CUORE Collaboration. Nature,2022,604:53

    [21]

    Roger G H. Searching for 0νββ Decay with CUORE and CUPID. University of California,2021

    [22]

    Asakura K et al. AIP Conf. Proc.,2015,1666:170003

    [23]

    Gando A et al. Phys. Rev. Lett.,2016,117:082503

    [24]

    KamLAND-Zen Collaboration. Phys.:Conf. Ser.,2017,888:012031

    [25]

    Adhikari G et al. J. Phys. G:Nucl. Part. Phys.,2022,49:015140

    [26]

    Renner J,Díaz López G et al. J. High Energ. Phys.,2019,2019:230

    [27]

    Martín-Albo J,Muñoz Vidal J et al. J. High Energ. Phys.,2016, 2016:159

    [28]

    Álvarez V et al. JINST,2013,8:T05002

    [29]

    Miloradovic M. Calibration,Background Study,and Search for New Physics with the GERDA Experiment. Universität Zürich, 2020

    [30]

    Cheng J P et al. Annu. Rev. Nucl. Part. Sci.,2017,67:231

    [31]

    Wang L,Yue Q,Kang K et al. Sci. China Phys. Mech. Astron., 2017,60:071011

    [32]

    Ma H,Dai W H,Yang L T. Proceeding of Science,2023, TAUP2023:200

    [33]

    Ni K X et al. Chin. Phys. C,2019,43:113001

    [34]

    An M M et al. Nucl. Instrum. Meth. A,2016,810:144

    [35]

    Zhao J,Wen L J,Wang Y F et al. Chin. Phys. C,2017,41(5):053001

    [36]

    Cao J et al. Chin. Phys. C,2020,44(3):031001

  • 期刊类型引用(1)

    1. 吴昊,吴松,聂丽萍,高振桓,王常帅,巩秀芳. 镍基高温合金设计研究现状与展望. 大型铸锻件. 2024(06): 26-33 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  417
  • HTML全文浏览量:  36
  • PDF下载量:  1601
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-03-31
  • 网络出版日期:  2024-05-14

目录

    /

    返回文章
    返回