高级检索

量子传感(Ⅰ):基础理论与方法

郭弘, 吴腾, 罗斌

郭弘, 吴腾, 罗斌. 量子传感(Ⅰ):基础理论与方法[J]. 物理, 2024, 53(4): 227-236. DOI: 10.7693/wl20240402
引用本文: 郭弘, 吴腾, 罗斌. 量子传感(Ⅰ):基础理论与方法[J]. 物理, 2024, 53(4): 227-236. DOI: 10.7693/wl20240402
GUO Hong, WU Teng, LUO Bin. Quantum sensing (Ⅰ): basics and approaches[J]. PHYSICS, 2024, 53(4): 227-236. DOI: 10.7693/wl20240402
Citation: GUO Hong, WU Teng, LUO Bin. Quantum sensing (Ⅰ): basics and approaches[J]. PHYSICS, 2024, 53(4): 227-236. DOI: 10.7693/wl20240402

量子传感(Ⅰ):基础理论与方法

详细信息
    通讯作者:

    郭弘,email:hongguo@pku.edu.cn

Quantum sensing (Ⅰ): basics and approaches

  • 摘要: 作为当前三大核心量子技术之一的量子传感技术,是量子信息感知与获取的重要物理实现基础,也是发展历史最悠久、技术成熟度最高、实际应用范围最广、潜在应用最多的量子技术。文章是量子传感的第一部分,主要介绍量子传感的基础理论与方法。首先从理论上总结量子传感的定义及基本概念,指出量子传感“量子性”的由来,并从实际应用的角度,提出量子传感的技术外延以及分类依据;接着详细介绍了有关量子传感的基本实现架构,以及描述量子传感性能的核心技术指标,归纳了用于提高量子传感性能的物理原理及技术方法。
    Abstract: Quantum sensing is one of the core directions of current quantum technology, and has the longest history, the highest maturity, and the widest applications. This article reviews the basic theory and methods of quantum sensing. First, the definition and basic concepts of quantum sensing are summarized, including the origin of the quantum nature of quantum sensing and the extension and classification of quantum sensing from the perspective of practical application. The basic and general protocol of quantum sensing is then described in detail, as well as the core technical parameters for depicting the performance of quantum sensing. Finally, the technical methods and physical principles to improve the performance of quantum sensing are summarized.
  • [1]

    Dowling J P,Milburn G J. Philosophical Transactions A,2003, 361:1655

    [2]

    867,1

    [3]

    Degen C,Reinhard F,Cappellaro P. Reviews of Modern Physics, 2017,89:035002

    [4]

    DiVincenzo D P. Fortschritte der Physik:Progress of Physics, 2000,48:771

    [5]

    Bringing Quantum Sensors to Fruition. https://www.quantum.gov/wp-content/uploads/2022/03/BringingQuantumSensorstoFruition. pdf

    [6]

    UK Quantum Technology Landscape 2014. https://www.quantumcommshub.net/wp-content/uploads/2020/09/QuantumTechnologyLandscape.pdf

    [7]

    Quantum Sensors at the Intersections of Fundamental Science, Quantum Information Science & Computing. https://www. osti.gov/biblio/1358078

    [8]

    Quantum Technologies Flagship Final Report. https://era. gv. at/public/documents/3365/Finalreport.pdf

    [9]

    Quantum Technologies in Space. https://qtspace.eu/wp-content/uploads/2023/08/QTspace_Stretegic_Report_Intermediate.pdf

    [10]

    Acín A et al. New Journal of Physics,2018,20:1

    [11]

    Wolf S A,Joneckis L G,Waruhiu S et al. Overview of the Status of Quantum Science and Technology and Recommendations for the DoD. Institute for Defense Analyses,2019 Applications of Quantum Technology

    [12]

    Applications of Quantum Technology(Investigation Report). https://dsb.cto.mil/reports/2010s/DSB_QuantumTechnologies_Executive%20Summary_10.23.2019_SR.pdf

    [13]

    Quantum Technology Strategy Report. https://www8.cao.go.jp/cstp/tougosenryaku/ryoushisenryaku.pdf

    [14]

    Quantum Photonic Development Roadmap. https://www.optica.org/industry/online_industry_library/quantum_photonics_roadmap/

    [15]

    Bringing Quantum Sensors to Fruition. https://www.quantum.gov/wp-content/uploads/2022/03/BringingQuantumSensorsto-Fru ition.pdf

    [16]

    Ludlow A D,Boyd M M,Ye J et al. Reviews of Modern Physics, 2015,87:637

    [17]

    Pezzè L,Smerzi A,Oberthaler M K et al. Reviews of Modern Physics,2018,90:035005

    [18]

    Pan J W,Chen Z B,Lu C Y et al. Reviews of Modern Physics, 2012,84:777

    [19]

    Brewer S M,Chen J S,Hankin A M et al. Physical Review Letters,2019,123:033201

    [20]

    NIST's Cesium Fountain Atomic Clocks. https://www.nist.gov/pml/time-and-frequency-division/time-realization/cesium-fountainatomic-clocks

    [21]

    Budker D,Romalis M. Nature Physics,2007,3:227

    [22]

    Marcis A,Budker D,Rochester S. Optically Polarized Atoms:Understanding Light-atom Interactions. Oxford University Press, 2010

    [23]

    Gallagher T F. Reports on Progress in Physics,1988,51:143

  • 期刊类型引用(5)

    1. 瞿宇阳,文田田,刘佳敏,阎平. 气候变化下菟丝子属3种植物在中国的潜在地理分布. 干旱区研究. 2025(01): 97-107 . 百度学术
    2. 高志伟,刘佳,陈艳,钟爱华. 中国降水对热带太平洋海温的滞后响应特征探讨. 干旱气象. 2024(02): 209-216 . 百度学术
    3. 周杰,王旭虎,杜维波,周晓雷,杨洁,张晓玮. 气候变化背景下的天山云杉潜在分布区预测. 干旱区研究. 2024(07): 1167-1176 . 百度学术
    4. 吕姗姗. 近42年农安县气温变化特征分析. 农业灾害研究. 2023(05): 52-54 . 百度学术
    5. 雷前坤,邱洋,李苍龙,陈瑞. 复杂性科学的机遇及挑战——2021年诺贝尔物理学奖解读. 信阳师范学院学报(自然科学版). 2022(04): 683-689 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1664
  • HTML全文浏览量:  237
  • PDF下载量:  2271
  • 被引次数: 12
出版历程
  • 收稿日期:  2024-03-27
  • 网络出版日期:  2024-04-17
  • 刊出日期:  2024-04-14

目录

    /

    返回文章
    返回