Beamlines and applications of the fourth-generation synchrotron radiation light source
-
摘要: 随着第四代同步辐射光源的兴起,得益于X射线亮度和相干性的大幅度提升,同步辐射实验技术在谱学、散射和成像等方面取得了显著进步。这些技术能够探测复杂非均匀体系和动态变化过程中的物质结构、成分、化学价态、电子态和磁性等关键信息,在基础科学领域和应用基础研究中发挥关键作用。文章旨在介绍第四代同步辐射光源的线站技术优势,并结合具体例子探讨其在若干物理研究中的应用,同时也讨论了当前存在的工程技术挑战。希望人们能够了解第四代同步辐射光源的光束线站的特点和应用潜力,以促进其在各个科研领域的推广。Abstract: With the emergence of fourth-generation synchrotron radiation light sources, significant improvements in X-ray brightness and coherence have led to notable advancements in synchrotron experimental techniques such as spectroscopy, scattering, and imaging. These techniques are capable of probing key information on structure, composition, chemical states, electronic states, and magnetism in complex heterogeneous systems and dynamic processes, playing a critical role in fundamental scientific and applied research. This article aims to evaluate the technical advantages of beamlines at fourth-generation synchrotron radiation light sources, and, with specific examples, to discuss their applications in various physical research areas, as well as current engineering and technical challenges. Through this article, we hope to promote the widespread application of fourth-generation synchrotron light sources across various research fields.
-
Keywords:
- synchrotron radiation /
- X-rays /
- coherence /
- beamline
-
-
[1] Als-Nielsen J,McMorrow D著,封东来译 . 现代X光物理原理. 上海:复旦大学出版社,2015 [2] 麦振洪等. 同步辐射光源及其应用(上、下). 北京:科学出版社, 2013 [3] Mobilio S,Boscherini F,Meneghini C. Synchrotron Radiation: Basics,Methods and Applications. Springer,2015
[4] Beaurepaire E et al. Magnetism and Synchrotron Radiation:Towards the Fourth Generation Light Sources. Springer,2013
[5] Eberhardt W. J. Electron Spectrosc.,2015,200:31
[6] Eriksson M,van der Veen J F,Quitmann C. J. Synchrotron Radiat.,2014,21:837
[7] 邰仁忠. 物理,2021,50(8):501 [8] Mino L,Borfecchia E,Segura-Ruiz J et al. Rev. Mod. Phys., 2018,90(2):025007
[9] Cramer S P. X-Ray Spectroscopy with Synchrotron Radiation Fundamentals and Applications. Springer,2020
[10] Stangl J,Mocuta C,Chamard V et al. Nanobeam X‐Ray Scattering:Probing Matter at the Nanoscale,Wiley-VCH,2013
[11] Hashimoto T. Principles and Applications of X-ray, Light and Neutron Scattering. Springer, 2020
[12] Jeffries C M,Ilavsky J,Martel A et al. Nat Rev Method Prime., 2021,1(1):70
[13] Withers P J,Bouman C,Carmignato S et al. Nat. Rev. Method Prime.,2021,1(1):18
[14] Ou X Y,Chen X,Xu X N et al. Research,2021,2021:9892152
[15] 袁清习,邓彪,关勇等. 物理,2019,48(4):205 [16] Lou S F,Sun N,Zhang F et al. Accounts Mater Res.,2021,2(12):1177
[17] Hitchcock A P,Toney M F. J. Synchrotron Radiat.,2014,21:1019
[18] Zhang L,Barrett R,Friedrich K et al. J. Phys. Conf. Ser.,2013, 425:052029
[19] Sobota J A,He Y,Shen Z X. Rev. Mod. Phys.,2021,93(2): 025006
[20] Rotenberg E,Bostwick A. J. Synchrotron Radiat.,2014,21:1048
[21] Majchrzak P,Muzzio R,Jones A J H et al. Small. Sci.,2021,1(6):2000075
[22] Sutton M,Mochrie S G J,Greytak T et al. Nature,1991,352(6336):608
[23] Shpyrko O G. J. Synchrotron Radiat.,2014,21:1057
[24] Shpyrko O G,Isaacs E D,Logan J M et al. Nature,2007,447(7140):68
[25] Ju G X,Xu D W,Highland M et al. Nat. Phys.,2019,15(6):589
[26] Leheny R L. Curr. Opin. Colloid. In.,2012,17(1):3
[27] Leitner M,Sepiol B,Stadler LM et al. Nat Mater.,2009,8(9):717
[28] Sandy A R,Zhang Q T,Lurio L B et al. Annual Review of Materials Research,2018,48:167
[29] Zhang Q T,Dufresne E M,Sandy A R. Curr. Opin. Solid. St. M., 2018,22(5):202
[30] 范家东,江怀东. 物理学报,2012,61(21):218702 [31] Miao J W,Ishikawa T,Robinson I K et al. Science,2015,348(6234):530
[32] Rau C. Synchrotron Radiation News,2017,30(5):19
[33] Lo Y H,Zhao L R,Gallagher-Jones M et al. Nat. Commun., 2018,9:1826
[34] Prosekov P A,Nosik V L,Blagov A E. Crystallogr Reports, 2021,66(6):867
[35] Pfeiffer F. Nat Photonics,2018,12(1):9
[36] Tripathi A,Mohanty J,Dietze S H et al. P. Natl. Acad. Sci. USA.,2011,108(33):13393
[37] Holler M,Guizar-Sicairos M,Tsai E H R et al. Nature,2017,543(7645):402
[38] Carbone D,Kalbfleisch S,Johansson U et al. J. Synchrotron Radiat.,2022,29:876
[39] Arul K T,Chang H W,Shiu H W et al. J. Phys D Appl. Phys., 2021,54(34):343001
[40] Varsha M V,Nageswaran G. Front. Chem.,2020,8:23
[41] Yang Y W,Li X Y,Lu H H. Nucl. Instrum. Meth A,2021,1011: 165579
[42] Li J Z,Huang X B,Pianetta P et al. Nat. Rev. Phys.,2021,3(12): 766
-
期刊类型引用(5)
1. 瞿宇阳,文田田,刘佳敏,阎平. 气候变化下菟丝子属3种植物在中国的潜在地理分布. 干旱区研究. 2025(01): 97-107 . 百度学术
2. 高志伟,刘佳,陈艳,钟爱华. 中国降水对热带太平洋海温的滞后响应特征探讨. 干旱气象. 2024(02): 209-216 . 百度学术
3. 周杰,王旭虎,杜维波,周晓雷,杨洁,张晓玮. 气候变化背景下的天山云杉潜在分布区预测. 干旱区研究. 2024(07): 1167-1176 . 百度学术
4. 吕姗姗. 近42年农安县气温变化特征分析. 农业灾害研究. 2023(05): 52-54 . 百度学术
5. 雷前坤,邱洋,李苍龙,陈瑞. 复杂性科学的机遇及挑战——2021年诺贝尔物理学奖解读. 信阳师范学院学报(自然科学版). 2022(04): 683-689 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 728
- HTML全文浏览量: 52
- PDF下载量: 1691
- 被引次数: 12