高级检索

第四代同步辐射光源加速器物理与技术

焦毅, 白正贺, 李晓

焦毅, 白正贺, 李晓. 第四代同步辐射光源加速器物理与技术[J]. 物理, 2024, 53(2): 71-79. DOI: 10.7693/wl20240201
引用本文: 焦毅, 白正贺, 李晓. 第四代同步辐射光源加速器物理与技术[J]. 物理, 2024, 53(2): 71-79. DOI: 10.7693/wl20240201
JIAO Yi, BAI Zheng-He, LI Xiao. Accelerator physics and technology of the fourthgeneration synchrotron radiation light source[J]. PHYSICS, 2024, 53(2): 71-79. DOI: 10.7693/wl20240201
Citation: JIAO Yi, BAI Zheng-He, LI Xiao. Accelerator physics and technology of the fourthgeneration synchrotron radiation light source[J]. PHYSICS, 2024, 53(2): 71-79. DOI: 10.7693/wl20240201

第四代同步辐射光源加速器物理与技术

基金项目: 

国家自然科学基金(批准号:12275284;11922512;11875259)、国家重点研发计划(批准号:2022YFA1603402;2022YFA1603400)资助项目

详细信息
    通讯作者:

    焦毅,email:jiaoyi@ihep.ac.cn

Accelerator physics and technology of the fourthgeneration synchrotron radiation light source

  • 摘要: 同步辐射光源是20世纪应用最广泛的高性能X射线源,已成为物理、化学、能源环境、生物医学、先进材料等领域前沿研究的重要工具。进入21世纪,基于电子储存环的同步辐射光源的发展前沿是第四代同步辐射光源(4GLS)。其采用紧凑型的多弯铁消色散结构,可以实现接近甚至达到X射线衍射极限的超低束流发射度,将光源亮度在第三代光源基础上进一步提升2—3个数量级。文章将重点介绍第四代同步辐射光源关键的加速器物理与技术,以及国际范围内第四代同步辐射光源装置的发展情况。
    Abstract: Synchrotron radiation light sources based on electron storage rings are the most widely used high-performance X-ray sources in the past 20th century, and have become important tools for frontier research in the fields of physics, chemistry, energy and environment, biomedical science, and advanced materials. In the 21st century, the foremost ring-based light source is the fourth-generation synchrotron radiation light source (4GLS). It generally adopts a compact multi-bend achromat lattice to achieve ultralow electron beam emittance that approaches the diffraction limit of X-rays, thus enabling an increase in the brilliance of the synchrotron radiation by 2—3 orders of magnitude compared to existing third-generation sources. This article will focus on the key accelerator physics and technology issues, as well as the current status, of 4GLSs around the world.
  • [1]

    Zhao Z T. Reviews of Accelerator Science and Technology,2010, 03:57

    [2]

    Elder F R et al. Physical Review,1947,71(11):829

    [3]

    Batterman B W. Nucl. Instr. and Meth. A,1980,172:21

    [4]

    Tang E,Xian D. Review of Scientific Instruments,1992,63:1575

    [5]

    Carr G et al. Proc. PAC,2001,4:2608

    [6]

    Craievich A F,Rodrigues A R. Hyperfine Interactions,1998,113: 465

    [7]

    Wang L et al. Proc. IPAC,2010:2588

    [8]

    Jackson A. Proc. PAC,1993:1432

    [9]

    Decker G. Proc. PAC,1996:698

    [10]

    Bcchetta C J et al. Proc. PAC,1997:826

    [11]

    Zyngier H et al. Proc. PAC,1995,1:155

    [12]

    Date S et al. Proc. PAC,1999:2039

    [13]

    Bakker R et al. Proc. PAC,1999:2382

    [14]

    Kempson V C. Proc. EPAC,2008:2052

    [15]

    M. Filhol et al. Proc. EPAC,2008:2022

    [16]

    Jiang M H et al. Chinese Science Bulletin,2009,54:4171

    [17]

    Eriksson M et al. J. Synchrotron Rad.,2014,21:837

    [18]

    Hettel R J. Synchrotron Rad.,2014,21:843

    [19]

    Einfeld D et al. Proc. PAC,1995:177

    [20]

    Johansson M et al. J. Synchrotron Rad.,2014,21:884

    [21]

    Borland M. Nucl. Instr. and Meth. A,2006,557:230

    [22]

    Al-Dmour E et al. J. Synchrotron Rad.,2014,21:878

    [23]

    Tavares P F et al. J. Synchrotron Rad.,2014,21:862

    [24]

    Liu L et al. J. Synchrotron Rad.,2014,21:904

    [25]

    Raimondi P et al. Commun. Phys.,2023,6:82

    [26]

    Borland M et al. Proc. NAPAC,2016:877

    [27]

    Jiao Y et al. J. Synchrotron Rad.,2018,25:1611

    [28]

    Bai Z H et al. Proc. IPAC,2021:407

    [29]

    https://als.lbl.gov/als-u/als-u-approach/

    [30]

    Sands M. SLAC-PUB-121,1970

    [31]

    Teng L C. Fermilab Report TM-1269,1984

    [32]

    Nagaoka R et al. Nucl. Instr. and Meth. A,2007,575:292

    [33]

    Jiao Y et al. Phys. Rev. ST Accel. Beams,2011,14:054002

    [34]

    Farvacque L et al. Proc. IPAC,2013:79

    [35]

    Streun A. Nucl. Instr. and Meth. A,2014,737:148

    [36]

    Chavanne J et al. Overview of magnet design issues,presentation at DLSR workshop,2013

    [37]

    Hwang C S et al. Phys. Rev. ST Accel. Beams,2011,14:044801

    [38]

    Zhang F J et al. J. Synchrotron Rad.,2020,27:1494

    [39]

    Wallen E. Proc. IPAC,2022:1624

    [40]

    Li X Y et al. Proc. IPAC,2021:339

    [41]

    Emery L,Borland M. Proc. PAC,2003:256

    [42]

    Aiba M et al. Phys. Rev. Accel. Beams,2015,18:020701

    [43]

    Sajaev V. Phys. Rev. Accel. Beams,2019,22:040102

    [44]

    Raimondi P et al. Phys. Rev. Accel. Beams,2021,24:110701

    [45]

    Lill R et al. Proc. IBIC,2016:55

    [46]

    Bec G L et al. Phys. Rev. Accel. Beams,2021,24:072401

    [47]

    Nagaoka R,Bane K L F. J. Synchrotron Rad.,2014,21:937

    [48]

    Tavares P F et al. J. Synchrotron Rad.,2018,25:1291

    [49]

    Liu L et al. Proc. IPAC,2021:13

    [50] 焦毅,潘卫民. 强激光与粒子束,2022,34:104002
    [51]

    Bai Z H et al. Proc. IPAC,2023:1075

    [52]

    Kim J. Beam dynamics simulations for Korea-4GSR,presentation at Accelerator Toolbox Workshop,2023

    [53]

    Biasci J C et al. Synchrotron Radiation News,2014,27(6):8

    [54]

    Tarawneh H et al. Proc. PAC,2013:288

    [55]

    Xu G et al. Chin. Phys. C,2016,40:027001

    [56]

    Alekou A et al. Proc. IPAC,2016:2940

    [57]

    Tanaka H. Synchrotron Radiation News,2014,27(6):23

    [58]

    Agapov I et al. Proc. IPAC,2022:1431

    [59]

    Jang G S et al. Nucl. Instr. and Meth. A,2022,1034:166779

    [60]

    Streun A et al. Proc. IPAC,2015:1724

    [61]

    Riemann B,Streun A. Phys. Rev. Accel. Beams,2019,22: 021601

    [62]

    Streun A et al. Phys. Rev. Accel. Beams,2023,26:091601

    [63]

    Karantzoulis E et al. Proc. IPAC,2019:1468

    [64]

    Loulergue A et al. Proc. IPAC,2021:1485

    [65]

    Dallin L O. Proc. IPAC,2019:1385

    [66]

    Tian S Q et al. Proc. IPAC,2015:304

    [67]

    Zhao Y et al. Nucl. Instr. and Meth. A,2023,1056:168565

    [68]

    Jiao Y et al. Proc. IPAC,2018:1363

    [69]

    Jiao Y et al. Proc. IPAC,2019:1203

    [70]

    Jiao Y et al. Radiat. Detect. Technol. Methods,2020,4:415

    [71] 孟才,曹建社,何大勇等. 强激光与粒子束,2023,35:054001
    [72]

    Li W M et al. Proc. EPAC,2008:2136

    [73]

    Wang L et al. Proc. EPAC,2008:2142

  • 期刊类型引用(5)

    1. 瞿宇阳,文田田,刘佳敏,阎平. 气候变化下菟丝子属3种植物在中国的潜在地理分布. 干旱区研究. 2025(01): 97-107 . 百度学术
    2. 高志伟,刘佳,陈艳,钟爱华. 中国降水对热带太平洋海温的滞后响应特征探讨. 干旱气象. 2024(02): 209-216 . 百度学术
    3. 周杰,王旭虎,杜维波,周晓雷,杨洁,张晓玮. 气候变化背景下的天山云杉潜在分布区预测. 干旱区研究. 2024(07): 1167-1176 . 百度学术
    4. 吕姗姗. 近42年农安县气温变化特征分析. 农业灾害研究. 2023(05): 52-54 . 百度学术
    5. 雷前坤,邱洋,李苍龙,陈瑞. 复杂性科学的机遇及挑战——2021年诺贝尔物理学奖解读. 信阳师范学院学报(自然科学版). 2022(04): 683-689 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1101
  • HTML全文浏览量:  139
  • PDF下载量:  1788
  • 被引次数: 12
出版历程
  • 收稿日期:  2023-10-23
  • 网络出版日期:  2024-02-22
  • 刊出日期:  2024-02-11

目录

    /

    返回文章
    返回