高级检索

Grassmann代数与张量网络——研究强关联费米模型的崭新数值方法

娄捷

娄捷. Grassmann代数与张量网络——研究强关联费米模型的崭新数值方法[J]. 物理, 2017, 46(7): 439-445. DOI: 10.7693/wl20170705
引用本文: 娄捷. Grassmann代数与张量网络——研究强关联费米模型的崭新数值方法[J]. 物理, 2017, 46(7): 439-445. DOI: 10.7693/wl20170705
LOU Jie. Combining the Grassmann algebra and tensor network: a new method to study strongly correlated fermionic systems[J]. PHYSICS, 2017, 46(7): 439-445. DOI: 10.7693/wl20170705
Citation: LOU Jie. Combining the Grassmann algebra and tensor network: a new method to study strongly correlated fermionic systems[J]. PHYSICS, 2017, 46(7): 439-445. DOI: 10.7693/wl20170705

Grassmann代数与张量网络——研究强关联费米模型的崭新数值方法

基金项目: 国家自然科学基金(批准号:11504014)、北京航空航天大学卓越百人计划和拔尖人才支持计划资助项目

Combining the Grassmann algebra and tensor network: a new method to study strongly correlated fermionic systems

  • 摘要: 文章介绍了把Grassmann代数与张量网络/张量矩阵乘积态类数值方法相结合所发展出的崭新的处理强关联费米/电子模型的严格数值模拟方法。该类方法普适、高效、严格,是具有广阔发展前景的研究手段。文章还介绍了GMERA(Grassmann multi-scale entanglement renormalization ansatz)方法的一些验证结果以及对t-J模型进行模拟的最新进展。
    Abstract: We introduce a new kind of numerical method to treat strongly correlated fermionic/electronic systems. By combining Grassmann algebra with tensor network/tensor product state methods, we may obtain methods that are general, unbiased, and highly effective. We will show benchmark GMERA calculations and new developments in the study of the t-J model.
  • [1] Troyer M,Wiese U J. Phys. Rev. Lett.,2005,94:170201;Henelius P,Sandvik A. Phys. Rev. B,2000,62:1102
    [2] Li Z X,Jiang Y F,Yao H. Phys. Rev. B,2015,91:241117(R)
    [3] Noack R M,White S R,Scalapino D J. Europhys. Lett.,1995,30:163
    [4] Verstraete F,Cirac J I. Phys. Rev. A,2004,70: 060302;. Verstraete F,Cirac J I. arXiv:cond- mat/0407066
    [5] Gu Z C. Phys. Rev. B,2013,88:115139
    [6] Vidal G. Phys. Rev. Lett.,2007,99:220405
    [7] Evenbly G,Vidal G. Phys. Rev. Lett.,2009,102:180406
    [8] Evenbly G,Vidal G. Phys. Rev. B,2009,79:144108
    [9] Evenbly G,Vidal G. Phys. Rev. Lett.,2010,104:187203
    [10] Harada K. Phys. Rev. B,2012,86:184421
    [11] Lou J,Harada K,Kawashima N. arXiv:1212. 1999
    [12] Barthel T,Pineda C,Eisert J. Phys. Rev. A,2009,80:042333
    [13] Corboz P,Vidal G. Phys. Rev. A,2010,81:010303(R);Corboz P,Vidal G. Phys. Rev. B,2009,80:165129
    [14] Gu Z C,Verstraete F,Wen X G. arXiv:1004.2563
    [15] Gu Z C,Jiang H C,Sheng D N et al. arXiv:1110.1183
    [16] Lou J,Chen Y. arXiv:1506.03716
    [17] Paper in work,will be online soon
    [18] Zhang F C,Rice T M. Phys. Rev. B,1988,37:3759
    [19] White S R,Scalapino D J. Phys. Rev. Lett.,1998,80:1272
    [20] Corboz P,Rice T M,Troyer M. arXiv:1402.2859V2
  • 期刊类型引用(3)

    1. 徐志昂,骆嘉晨,丁相贵,杜宗亮,郭旭. 基于扩散模型的高阶拓扑绝缘体实时设计. 力学学报. 2024(07): 1840-1848 . 百度学术
    2. 瞿斌晨,殷嘉成,郭允梁,房勇. CeSb单晶的电磁性质研究. 常熟理工学院学报. 2023(02): 1-3 . 百度学术
    3. 金国钧. 凝凝聚体中的拓扑量子态. 物理学进展. 2019(06): 187-241 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  183
  • HTML全文浏览量:  4
  • PDF下载量:  995
  • 被引次数: 6
出版历程
  • 收稿日期:  2017-06-12
  • 发布日期:  2017-07-11

目录

    /

    返回文章
    返回