高级检索

Kagome光纤超快非线性光学研究进展

杨佩龙, 滕浩, 方少波, 魏志义

杨佩龙, 滕浩, 方少波, 魏志义. Kagome光纤超快非线性光学研究进展[J]. 物理, 2017, 46(6): 362-375. DOI: 10.7693/wl20170604
引用本文: 杨佩龙, 滕浩, 方少波, 魏志义. Kagome光纤超快非线性光学研究进展[J]. 物理, 2017, 46(6): 362-375. DOI: 10.7693/wl20170604
YANG Pei-Long, TENG Hao, FANG Shao-Bo, WEI Zhi-Yi. Ultrafast nonlinear optics in Kagome fibers[J]. PHYSICS, 2017, 46(6): 362-375. DOI: 10.7693/wl20170604
Citation: YANG Pei-Long, TENG Hao, FANG Shao-Bo, WEI Zhi-Yi. Ultrafast nonlinear optics in Kagome fibers[J]. PHYSICS, 2017, 46(6): 362-375. DOI: 10.7693/wl20170604

Kagome光纤超快非线性光学研究进展

基金项目: 国家重点基础研究发展计划(批准号:2013CB922401)、国家自然科学基金(批准号:11474002,61575219)资助项目

Ultrafast nonlinear optics in Kagome fibers

  • 摘要: Kagome光纤(简称KGF)是一种不依赖带隙导光的新型空芯微结构光纤,其结构设计灵活、损伤阈值高、损耗低(高透区损耗可低至~40 dB/km)、支持宽带传输(<500 nm),并可通过纤芯改变所充气体及调节气压实现光纤色散、非线性效应的有效调制,在强场物理、超快激光技术等领域研究中优势突出。基于KGF在超快光学中的重要意义,该文对近年来国际上关于KGF在非线性光学变频及超短脉冲压缩等领域的研究成果进行介绍,并对关键性应用技术进行简要分析,最后对其发展前景进行展望。
    Abstract: Kagome fiber (KGF) is a new type of microstructure optical fiber, in which light guidance is not completely dependent on the photonic bandgap. This fiber displays some outstanding features such as flexible structure design, high damage threshold, low loss (as low as ~40 dB/km at high transmission wavelengths), and wide transmitting bandwidth (<500 nm). In particular, by adjusting the gas pressure in the fiber's hollow core, its nonlinearity and dispersion properties can be modulated easily for various important applications, including strong field physics, ultrafast nonlinear optics, and ultrashort pulse compression technology. In this paper we review the major experimental and theoretical progress achieved in recent years in KGF applications based on nonlinear optical frequency conversion and ultrashort pulse compression, then analyse the key technology behind their advanced applications. Finally, we assess the prospects for further applications of this novel fiber.
  • [1] Kao K C,Hockham G A. Iee Proceedings,1986,133 (3):191
    [2] Wang W,Yang Q S,Wang X F. Infrared & Laser Engineering,2006,35 (5):509
    [3] Barnes W L,Poole S B,Townsend J E et al. Journal of Lightwave Technology,1989,7:1461
    [4] Kumar V V R,George A,Reeves W et al. Optics Express,2002,10 (25):1520
    [5] Krebs M,Hädrich S,Hoffmann A et al. Compact 10 MHz,140 MW Peak Power Source Enabling Bright High Harmonic Generation.In:Advanced Solid State Lasers. Shanghai,2014,ATu5A. 5
    [6] Tabassum R,Gupta B D. Journal of Optics,2016,18 (1):15004
    [7] Arifler D,Guillaud M,Carraro A et al. Journal of Biomedical Optics,2003,8 (3):484
    [8] Balciunas T,Fourcadedutin C,Fan G et al. Nature Communications,2011,6:6111
    [9] Offer H P,Jones M G. patent:Heat treatment for weld beads. 2001,US
    [10] Wang Y Y,Wheeler N V,Couny F et al. Optics Letters,2011,36 (5):669
    [11] Henry K,Oren C,Ivan C et al. Science,2007,317 (5839):775
    [12] Travers J C,Chang W,Nold J et al. Journal of the Optical Society of America B,2011,28 (12):A11
    [13] Hosokai T,Kando M,Dewa H et al. Optics Letters,2000,25(1):10
    [14] Benabid F,Knight J C,Antonopoulos G et al. Science,2002,298 (5592):399
    [15] Birks T A,Russell P S J,Allan D C et al. Science,1999,285(5433):1537
    [16] Hasanuzzaman G K M,Habib M S,Razzak S M A et al. Extremely low loss THz guidance using Kagome lattice porous core photonic crystal fiber. In:Optical Fiber Communications Conference and Exhibition (OFC). Los Angeles,2015. 1—3
    [17] Argyros A,Pla J. Optics Express,2007,15 (12):7713
    [18] Debord B,Alharbi M,Bradley T et al. Optics Express,2013,21(23):28597
    [19] Russell St. P J,Birks T A,Knight J C. patent:Photonic Crystal Fibres,2007,US
    [20] Argyros A,Leon-Saval S G,Pla J et al. Optics Express,2008,16(8):5642
    [21] Vincetti L,Setti V,Zoboli M. Confinement Loss of Tube Lattice and Kagome Fibers. In:Advanced Photonics,OSA Technical Digest (CD),2011. SOWB3
    [22] Nold J,Hölzer P,Joly N Y et al. Optics Letters,2010,35 (17):2922
    [23] Börzsönyi A,Heiner Z,Kalashnikov M P et al. Applied Optics,2008,47 (27):4856
    [24] Finger MA,Joly N Y,Weiss T et al. Optics Letters,2014,39 (4):821
    [25] Bree C,Demircan A,Steinmeyer G. Quantum Electronics IEEE Journal,2010,46 (4):433
    [26] Osvay K,Canova L,Durfee C et al. Optics Express,2009,18(25):25847
    [27] Luches A,Nassisi V,Perrone M R. Optics Letters,1987,12 (1):33
    [28] Benoît A,Beaudou B,Alharbi M et al. Optics Express,2015,23(11):14002
    [29] Lin J,Deng J,He H et al. Applied Optics,2013,52 (10):2049
    [30] Couny F,Raymer M G. Science,2007,318 (5853):1118
    [31] Wang Y Y,Couny F,Light P S et al. Optics Letters,2010,35(8):1127
    [32] Abdolvand A,Walser AM,Ziemienczuk M et al. Optics Letters,2012,37(21):4362
    [33] Azhar M,Wong G K,Chang W et al. Optics Express,2013,21(4):4405
    [34] Debord B,Alharbi M,Benoît A et al. Optics Letters,2014,39(21):6245
    [35] Ziemienczuk M,Walser A M,Abdolvand A et al. Journal of the Optical Society of America B,2012,29 (7):1563
    [36] Rothhardt J,Hädrich S,Carstens H et al. Optics Letters,2011,36 (23):4605
    [37] Wang Y Y,Peng X,Alharbi M et al. Design and fabrication of hollow-core photonic crystal fibers for high power fast laser beam transportation and pulse compression. In: International Society for Optics and Photonics,2012:3111—3113
    [38] Emaury F,Dutin C F,Saraceno C J et al. Optics Express,2013,21 (4):4986
    [39] Emaury F,Saraceno C J,Debord B et al. Optics Letters,2014,39 (24):6843
    [40] Fang S,Ye H,Cirmi G et al. High-Energy Carrier-Envelope Phase-Stable Optical Waveforms Compressible to sub 1 fs Using Induced-Phase Modulation in Argon-Filled Hollow-Core Fiber. In:Research in Optical Sciences(Optical Society of America).Berlin,2014. p. HW1C. 2
    [41] Giree A,Guichard F,Machinet G et al. Frontiers in Ultrafast Optics Biomedical Scientific & Industrial Applications XV.2015,93550I-93550I-93557
    [42] Murari K,Cankaya H,Debord B et al. Sub-300 fs,0.5 mJ Pulse at 1 kHz from Ho:YLF Amplifier and Kagome Pulse Compression.In:Optical Society of America. California,2015. 1—2
    [43] Hädrich S,Krebs M,Hoffmann A et al. Light Science & Applications,2015,4 (8):1
    [44] Belli F,Abdolvand A,ChangWet al. Physics,2015,4 (4):292
    [45] Mak K F,Seidel M,Pronin O et al. Optics Letters,2015,40 (7):1238
    [46] Gérôme F,Balciunas T,Fourcadedutin C et al. Self-Compression to Sub-Cycle Regime in Kagome Hollow-Core Photonic Crystal Fiber. In: CLEO Science and Innovations. California,2014. 1—2
    [47] Nisoli M,De S S,Svelto O et al. Optics Letters,1997,22 (8):522
    [48] ·
  • 期刊类型引用(4)

    1. 郭东琴,卫正统,李霞. 与专业结合的大学物理教学改革探索与实践. 西部素质教育. 2025(01): 178-181 . 百度学术
    2. 崔琰,张玉峰. 中学物理中认识角度的类型、转换及其教学建议. 中学物理. 2023(03): 6-10 . 百度学术
    3. 许方杰. 再谈卡文迪许扭秤实验——原貌与发展. 物理教师. 2023(03): 66-67+84 . 百度学术
    4. 魏红祥,陈征,张玉峰. 物理——描写自然的“记叙文”. 物理. 2021(02): 135-137 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  166
  • HTML全文浏览量:  16
  • PDF下载量:  783
  • 被引次数: 7
出版历程
  • 收稿日期:  2016-07-11
  • 发布日期:  2017-06-11

目录

    /

    返回文章
    返回