高级检索

钍基熔盐堆核能系统

蔡翔舟, 戴志敏, 徐洪杰

蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统[J]. 物理, 2016, 45(9): 578-590. DOI: 10.7693/wl20160904
引用本文: 蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统[J]. 物理, 2016, 45(9): 578-590. DOI: 10.7693/wl20160904
CAI Xiang-Zhou, DAI Zhi-Min, XU Hong-Jie. Thorium molten salt reactor nuclear energy system[J]. PHYSICS, 2016, 45(9): 578-590. DOI: 10.7693/wl20160904
Citation: CAI Xiang-Zhou, DAI Zhi-Min, XU Hong-Jie. Thorium molten salt reactor nuclear energy system[J]. PHYSICS, 2016, 45(9): 578-590. DOI: 10.7693/wl20160904

钍基熔盐堆核能系统

Thorium molten salt reactor nuclear energy system

  • 摘要: 裂变核能是保障能源增长需求和促进节能减排的重要手段。钍基核能具有中子增殖性能好、产生高放废料少和储量丰富等特点;熔盐堆作为第四代先进反应堆的6个候选堆之一,具有钍高效利用、高温制氢、无水冷却、适合小型模块化设计等优势和潜力。发展钍基熔盐堆,对中国的核能战略发展具有重要意义,将会有助于解决中国的能源和环境双重挑战。2011 年1 月,中国科学院启动战略性先导科技专项——钍基熔盐堆核能系统(TMSR),采取液态熔盐堆和固态熔盐堆两种堆型研发同时部署和相继发展的技术路线,致力于实现基于熔盐堆的钍资源高效利用和核能综合利用,为我国核能发展赢得先机。
    Abstract: Nuclear fission energy has incomparable advantages in satisfying our ever growing need for energy and environmental protection. The importance of thorium-based nuclear fuel has become increasingly prominent because of its excellent breeding capability in both thermal and fast reactors, lesser long-lived minor actinides resulting from fission, and abundant reserves of thorium.One of the six IVth-generation reactor candidates, the molten salt reactor (MSR), has characteristics including high thorium energy conversion, hydrogen production at high temperature, water-free cooling, and small modular design. These properties make MSRs one of the best approaches to solve the energy and environment issues of China. 
    In January 2011 the Chinese Academy of Sciences launched the“Thorium molten salt reactor nuclear energy system”project of the Strategic Priority Program, which will develop both liquid and solid fuel MSR. It will aim to realize effective thorium energy utilization and comprehensive utilization of nuclear energy in twenty to thirty years. Research has already commenced and achieved some results in key technologies. Although there are still several challenges for Th-U fuel cycle and MSR development, it can be expected that the project will help solve the energy problem as well as maintain sustainable development in China for many years to come.
  • [1] Edenhofer O et al (Eds). Intergovernmental Panel on Climate Change,Climate Change 2014:Mitigation of Climate Change.New York:Cambridge Univ. Press,2014
    [2] 中国能源中长期发展战略研究项目组. 中国能源中长期(2030、2050)发展战略研究:电力、油气、核能、环境卷. 北京:科学出版社,2011
    [3] Technology Roadmap Nuclear Energy,IEA,2010
    [4] Renault C et al. The MSR in Generation IV:Overview and Perspectives.In:GIF Symposium-Paris (France),2009
    [5] IAEA-TECDOC-1319. Thorium Fuel Utilization:Options and Trends. 2002
    [6] IAEA-TECDOC-1450. Thorium Fuel Cycle-Potential Benefits and Challenges,2005
    [7] 中国科学院关于呈送《钍的核能研究》的报告,科发学部字[2007] 54 号
    [8] 徐光宪. 稀土信息,2005,(5):4
    [9] 顾忠茂. 核科学与工程,2007,27 (2):97
    [10] Kang J,von Hippel F N. Science & Global Security,2001,9:1
    [11] Fuel summary report: Shippingport light water breeder reactor,INEEL/EXT-98-00799,2002 Rev. 2
    [12] Robertso R C. MSRE Design and Operations Report,Part I,Description of Reactor Design,ORNL-TM-728 [R]. Oak Ridge,Tennessee:Oak Ridge National Laboratory,1965
    [13] Fraas A P,Savolainen AW. Design Report on the Aircraft Reactor Test,ORNL-2095 [R]. Oak Ridge,Tennessee:Oak Ridge National Laboratory,1956
    [14] Cottrell W B,Hungerford H E,Leslie J K et al. Operation of The Aircraft Reactor Experiment,ORNL-1845 [R]. Oak Ridge,Tennessee:Oak Ridge National Laboratory,1955
    [15] Guymon R H,MSRE Systems and Components Performance,ORNL-TM-3039 [R]. Oak Ridge,Tennessee:Oak Ridge National Laboratory,1973
    [16] Technology Roadmap Update for Generation IV Nuclear Energy Systems. OECD Nuclear Energy Agency for the Generation IV International Forum,2014
    [17] Forsberg C W,ORNL,Thermal- and Fast-Spectrum Molten Salt Reactor for Actinide Burning and Fuel Production. In:Proc. of the Global 2007 Advanced Nuclear Fuel Cycles and Systems,American Nuclear Society,Boise,ID,USA,September 2007.9—13
    [18] Reactor and Fuel Cycle Technology Subcommittee Report to the full Commission. Blue Ribbon Commission on America's Nuclear Future,2012
    [19] Merle-Lucotte E,Heuer D,Le Brun C et al. Fast Thorium Molten Salt Reactors Started with Plutonium. In:Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP),Reno,USA,2006
    [20] Heuer D et al. Revue Générale Nucléaire,2010,6:95
    [21] Ignatiev V V,Konakovb S A et al. Molten salt reactor technology for partitioning & transmutation and harmonisation of the future nuclear fuel cycle. In:Proceedings of the Fifth International Exchange Meeting Mol,Belgium,25—27 November 1998
    [22] Furukawa K,Mitachi K,Leco cq A et al. Th Fuel-Cycle Deploy through Pu Incine by THORIMS-NES. IAEA-TECDOC-916,1996
    [23] Forsberg C W,Pickard P S,Peterson P F. Nuclear Technology,2003,144 (3):289
    [24] Forsberg C. American Society of Civil Engineers,2014,132 (3):109
  • 期刊类型引用(1)

    1. 何奎,郭晓娟,黄斯珉. 传热学与近代科学. 广东化工. 2022(23): 278-279 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  881
  • HTML全文浏览量:  86
  • PDF下载量:  2530
  • 被引次数: 2
出版历程
  • 收稿日期:  2016-08-06
  • 发布日期:  2016-09-11

目录

    /

    返回文章
    返回