高级检索

离子光频标的原理和发展

黄垚, 陆泽晃, 管桦, 高克林

黄垚, 陆泽晃, 管桦, 高克林. 离子光频标的原理和发展[J]. 物理, 2016, 45(7): 423-430. DOI: 10.7693/wl20160702
引用本文: 黄垚, 陆泽晃, 管桦, 高克林. 离子光频标的原理和发展[J]. 物理, 2016, 45(7): 423-430. DOI: 10.7693/wl20160702
HUANG Yao, LU Ze-Huang, GUAN Hua, GAO Ke-Lin. Principle and progress of the ion optical frequency standards[J]. PHYSICS, 2016, 45(7): 423-430. DOI: 10.7693/wl20160702
Citation: HUANG Yao, LU Ze-Huang, GUAN Hua, GAO Ke-Lin. Principle and progress of the ion optical frequency standards[J]. PHYSICS, 2016, 45(7): 423-430. DOI: 10.7693/wl20160702

离子光频标的原理和发展

基金项目: 国家重点基础研究发展计划(批准号:2012CB821301)、国家自然科学基金(批准号:91336211,11034009,11474318,11304363)资助项目

Principle and progress of the ion optical frequency standards

  • 摘要: 人类对时间的计量历史可以追溯到几千年前,随着科学技术的发展与进步,人类对事件的计量精度也越来越精确。当前,世界上最精确的计时工具为光频标,可以达到百亿年不差一秒的水平。文章回顾了离子光频标的发展过程和当前的研究进展,简要介绍了钙离子光频标和量子逻辑铝离子光频标的原理及进展。
    Abstract: With respect to human history, time keeping is probably up to thousands of years; with the development of science and technology, the accuracy of time keeping becomes more and more accurate. At present, the world's most accurate timing keeping device is the optical frequency standard, which can neither gain nor lose one second in about ten billion years. In this paper, we will review the development and current research progress of the ion optical frequency standards, after which we will briefly introduce the principle and the progress of the calcium ion optical frequency standard and the quantum logic aluminum ion optical frequency standard.
  • [1] Dehmelt H,Bull. Am. Phys. Soc.,1973,18:1521
    [2] Bergstrom I et al. Nuc.Instru.& Metho. Phys. Resear. A,2002,487:618
    [3] Paul W,Steinwedel H. Zeitschrift f. Naturforschung A,1953,8:448
    [4] Van Dyck Jr R et al. Phys. Rev. Lett.,1993,70:2888
    [5] Dehmelt H,Walls F. Phys. Rev. Lett.,1968,21:127
    [6] Wineland D,Ekstrom P,Dehmelt H. Phys. Rev. Lett.,1973,31:1279
    [7] Van Dyck Jr R,Schwinberg P,Dehmelt H. Phys. Rev. Lett.,1987,59:26
    [8] Schuessler H et al. Phys. Rev.,1969,187:5
    [9] Ghosh P. Ion Trap. Oxford: Clarendon Press,1995.7
    [10] NeuhaserWet al. Phys. Rev. Lett.,1978,41:233
    [11] Wineland D et al. Phys. Rev. Lett.,1978,40:1639
    [12] NeuhaserWet al. Phys. Rev. A,1980,22:1137
    [13] Drever R,Hall J,Kowalski F et al. Applied Physics B,1983,31:97
    [14] Kessler T et al. Nature Photonics,2012,6:687
    [15] Spence D,Kean P,SibbettW. Opt. Lett.,1991,16:42
    [16] Asaki M,Huang C,Garvey D et al. Opt. Lett.,1993,18:977
    [17] Reichert J,Niering M,Holzwarth R et al. Phys. Rev. Lett.,1999,84:3232
    [18] Diddams S et al. Phys. Rev. Lett.,2000,84:5102
    [19] Hall J. IEEE J. of Quant. Electron.,2000,6:1136
    [20] Ye J,Cundiff S. Femtosecond Optical Frequency Comb. Springer,2005
    [21] Barwood G et al. Phys. Rev. A,2014,89:050501
    [22] Dubé P et al. Phys. Rev. Lett.,2014,112:173002
    [23] Godun R et al. Phys. Rev. Lett.,2014,113:210801
    [24] Huntemann N et al. Phys. Rev. Lett.,2012,108:090801
    [25] Rosenband T et al. Science,2008,319:1808
    [26] Chou C et al. Phys. Rev. Lett.,2010,104:070802
    [27] von Zanthier J,Becker T et al. Optics Letters,2000,25(23):1729
    [28] Chwalla M et al. Phys. Rev. Lett.,2009,102:023002
    [29] Matsubara K et al. Opt. Express,2012,20:22034
    [30] Huntemann N et al. Phys. Rev. Lett.,2016,116:063001
    [31] Consultative Committee for Time and Frequency (CCTF) Report of the 19th Meeting (September 13—14,2012)
    [32] Huang Y et al. Phys. Rev. Lett.,2016,116:013001
    [33] Zhang J et al. Rev. Sci. Instrum.,2014,84:123109
    [34] Zhou H et al. Chin. Phys. Lett.,2015,32:054207
    [35] Recommendation 2(c2-2009)-(CIPM).http://www.bipm.org/utils/en/pdf/CIPMOutcomes/CI-2009-Recommendation-2.pdf
    [36] Champenois C et al. Phy. Lett. A,2004,331:298
    [37] Jurcevic P et al. Nature,2014,511:202
    [38] Ramm M et al. Phys. Rev. Lett.,2013,111:023004
    [39] Sherman J et al. Phys. Rev. Lett.,2013,111:180501
    [40] Sahoo B et al. Phys. Rev. A,2006,74:062504
    [41] Shu H et al. Chin. Phys. Lett.,2005,22:1641
    [42] Guo B et al. Front. Phys. China,2009,4:144
    [43] Liu Q et al. Chin. Phys. Lett.,2011,28:013201
    [44] Guan H et al. Opt. Commun.,2011,284:217
    [45] Huang Y et al. Phys. Rev. A,2011,84:053841
    [46] Schmidt P et al. Science,2005,309:749
    [47] Deng K et al. Sci. Sin-Phys. Mech. Astron.,2016,to be printed
  • 期刊类型引用(1)

    1. 田霖,李春燕,翟建树,卢煜,寇生中. 非晶合金的功能性研究进展. 稀有金属. 2021(08): 998-1009 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  123
  • HTML全文浏览量:  20
  • PDF下载量:  967
  • 被引次数: 8
出版历程
  • 收稿日期:  2016-05-29
  • 发布日期:  2016-07-11

目录

    /

    返回文章
    返回