Quantum mechanical paradoxes and the second quantum revolution
-
摘要: 文章介绍了三个著名的量子力学佯谬,分别是有关量子力学与定域实在性、语境实在性,以及宏观实在性三者之间的关系。这三个佯谬对应三个思想实验,后来又发展出由隐变量理论和实在性推导出的不等式,这些不等式可以定量地判断量子力学和这些实在性之间的关系,使得纠缠等量子力学特性成为可以被真实探测和利用的资源,被广泛应用于量子保密通信、量子隐形传态、量子计算等任务中。量子信息理论的出现,进一步带动了量子通信、量子计算和量子传感等高新技术领域的产生和发展,开启了“第二次量子革命”Abstract: This paper introduces three famous paradoxes of quantum mechanics concerning the relationships between quantum mechanics and local reality, contextual reality, and macroscopic reality. The three paradoxes correspond to three thought experiments, from which the inequalities derived from the hidden variable theory and reality were developed. These inequalities can thus quantitatively evaluate the relationship between quantum mechanics and the three realities, making entanglement and other quantum properties become real resources that can be detected and utilized, and so widely used in quantum cryptography, quantum teleportation, and quantum computation. The emergence of quantum information theory has further driven the generation and development of quantum communication, simulation and sensing, as well as other high-tech fields, thus opening the "second quantum revolution".
-
Keywords:
- Bell inequality /
- EPR paradox /
- Schrö /
- dinger's cat
-
-
[1] Einstein A, Podolsky B, Rosen N. Phys. Rev., 1935, 47:777
[2] Kochen S, Specker E P. Math J. Mech., 1967, 17:59
[3] Schrödinger E. Naturwissenschaften, 1935, 23(48):807
[4] Bohm D. Phys. Rev., 1952, 85:166
[5] Bohm D. Phys. Rev., 1952, 85:180
[6] Bohr N. Phys. Rev., 1935, 48:696
[7] Bell J S. Physics Physique Fizika, 1964, 1:195
[8] Clauser J F, Horne M A, Shimony A et al. Phys. Rev. Lett., 1969, 23:880
[9] Freedman S J, Clauser J F. Phys. Rev. Lett., 1972, 28:938
[10] Aspect A, Grangier P, Roger P G. Phys. Rev. Lett., 1981, 47:460
[11] Aspect A, Grangier P,Roger P G. Phys. Rev. Lett., 1982, 49:91
[12] Aspect A, Grangier P,Roger P G. Phys. Rev. Lett., 1982, 49:1804
[13] Weihs G, Jennewein T, Simon C H et al. Phys. Rev. Lett., 1998, 81:5039
[14] Hensen B, Bernien H, Dréau A E et al. Nature, 2015, 526(7575):682
[15] Shalm L K, Meyer-Scott E, Christensen B G et al. Phys. Rev. Lett., 2015, 115(25):250402
[16] Giustina M, Versteegh M A M, Wengerowsky S et al. Phys. Rev. Lett., 2015, 115(25):250401
[17] The BIG Bell Test Collaboration. Nature, 2018, 557(7704):212
[18] Vidal G, Werner R F. Phys. Rev. A, 2002, 65:032314
[19] Wiseman H M, Jones S J, Doherty A C. Phys. Rev. Lett., 2007, 98:140402
[20] Uola R, Costa A C S, Nguyen H C et al. Rev. Mod. Phys., 2020, 92:015001
[21] Bowles J, Vértesi T, Quintino M T et al. Phys. Rev. Lett., 2014, 112:200402
[22] Zhu G, Dilley D, Wang K et al. npj Quantum Inf., 2021, 7(1):1
[23] Zhan X, Zhang X, Li J et al. Phys. Rev. Lett., 2016, 116:090401
[24] Zhan X, Kurzyński P, Kaszlikowski D et al. Phys. Rev. Lett., 2017, 119:220403
[25] Zhan X, Cavalcanti E G, Li J et al. Optica, 2017, 4:966
[26] Qu D, Wang K, Xiao L et al. npj Quantum Information, 2021, 7:154
[27] Qu D, Kurzyński P, Kaszlikowski D et al. Phys. Rev. A, 2020, 101:060101
[28] Leggett A J, Garg A. Phys. Rev. Lett., 1985, 54(9):857
[29] Wang K, Emary C, Zhan X et al. Opt. Exp.,2017, 25:31462
[30] Wang K,Knee G C,Zhan X et al. Phys. Rev. A,2017,95:032122
[31] Wang K, Emary C, Xu M et al. Phys. Rev. A, 2018, 97:020101
[32] Wang K, Xu M, Xiao L et al. Phys. Rev. A, 2020, 102:022214
[33] 郭光灿. 颠覆:迎接第二次量子革命. 北京:科学出版社, 2022 [34] 薛鹏, 郭光灿. 物理, 2002, 31(6):385 -
期刊类型引用(6)
1. 李鹏程,王永佳,李庆峰,张鸿飞. 利用两π介子HBT关联约束重离子碰撞中高密核物质的状态方程. 原子核物理评论. 2024(01): 522-529 . 百度学术
2. 岳晓清,李鹏程,王永佳,李庆峰,刘福虎. 质心能量7.7 GeV下Au+Au碰撞中初始密度涨落对累积矩的影响. 原子核物理评论. 2024(01): 551-557 . 百度学术
3. 张宇,张定伟,罗晓峰. 相对论重离子碰撞中QCD相图的实验研究. 核技术. 2023(04): 4-16 . 百度学术
4. 陈倩,马国亮,陈金辉. 重离子碰撞中守恒荷涨落与QCD相变的输运模型研究. 核技术. 2023(04): 179-206 . 百度学术
5. 刘峰,罗晓峰,施梳苏,王亚平. RHIC能区夸克物质性质和QCD相结构的实验研究. 中国科学:物理学 力学 天文学. 2023(09): 27-40 . 百度学术
6. 陈金辉,马余刚,朱相雷. 相对论重离子对撞中奇异强子产生机制的实验研究进展. 科学通报. 2021(34): 4358-4367 . 百度学术
其他类型引用(19)